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A method of transforming problems with diffuse interfaces is presented which
leads to equations that are easier to compute accurately. Information obtained by
internal layer asymptotic analysis is utilized to motivate transformations of the de-
pendent variables. The new evolution equations which result from this change of
variables can be solved numerically in a straightforward manner. Numerical experi-
ments indicate that truncation errors can be significantly reduced in such problems,
allowing a coarser grid to be used. Applications to several well-known models are
presented. ( 2001 Elsevier Science
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1. INTRODUCTION

Numerous physical models have solutions which develop diffuse interfaces, narrow ¢
tial structures where the solution or its derivatives vary rapidly, but continuously, betwe
two (or more) values. This rapid variation naturally leads to difficulty in numerical comp
tation. In particular, very fine grids must be employed to adequately resolve the struct
of solutions around the diffuse interface.

Associated with diffuse interfaces is a small sealproportional to the width of the inter-
face. This scale frequently appears explicitly as a parameter in the model equations. The
ase — 0 canusually be analyzed systematically by asymptotic expansions [10]. The ouf
of this analysis is a description of the motion of the limiting interface, which is typically somn
free boundary problem. The fine structure of the solution is also produced as a by-prot
of the analysis; it is this information we will utilize to improve computational results.

Most approaches to solving such equations numerically lead to the conclusion that
grid refinement near the interface needs to be much less than theewidiblutions are to
be computed accurately. This leads to very large grid sizes, especially in higher dimensi
and makes computing interesting problems prohibitive.

! Present address: Department of Mathematics, Duke University, Durham, NC 27708-0320.

695

0021-9991/01 $35.00
(© 2001 Elsevier Science
All rights reserved.



696 KARL GLASNER

One way of ameliorating this problem is to adaptively refine the grid only near tt
transition layer (refs. [4, 5, 18, 19] are examples of this). This can lead to more efficie
computation, but at the expense of complicating the implementation of the underlyi
numerical method.

Another approach is solve the sharp interface free boundary problem derived from
asymptotic analysis as an alternative to the diffuse interface model (some examples
[14, 22]). Difficulties arise, however, during topological changes, when interfaces bre
apart or merge together. Frequently ad hoc approaches have been needed to handle
cases. As a result, numerical algorithms can be exceedingly complicated.

This paper explores yet another way of overcoming the problem of requiring very fi
grids near interfaces. Very specific information about solutions near diffuse interface:
available from the asymptotic analysis for small interface widths. This information may |
used in turn to make intuitively motivated transformations of the equations. In this paper
transformations take the form of simple changes of variables, but nonlocal transformati
could also be advantageous. On the basis of numerical experiments, we conclude tf
substantial gain in accuracy is obtained from computing the equations in terms of
transformed variables instead. An important point is that this technique is not sensitive
the type of numerical discretization employed, nor is it mutually exclusive of efficienc
improving algorithms such as adaptive mesh refinement.

The idea of transforming problems to make them easier to compute is not new, of cou
Applying a Fourier transform to the usual heat equation, for example, may yield a trivial ¢
of uncoupled ordinary differential equations. Preconditioning of linear systems is anotl
situation where a transformation can make problems significantly easier to solve; it
for example, greatly accelerate the convergence of iterative methods. These examples
as motivation for finding transformations for any problem which makes it easier to sol\
Fundamental to this process is incorporating analytical information already known ab
the problem. This information need not be complete, but only needs to, in some sense
us “closer” to knowing the solution. In the case of diffuse interface phenomena, asymptc
information for small interface width is typically available.

This paper considers several examples of diffuse interface models, and shows how
ple, well-motivated transformations may improve the outcome of numerical simulatic
Section 2 reviews a simple example which motivates the transformations considered in
rest of the paper. Section 3 reviews a prototypical diffuse interface problem, the Cahn-A
equation, and shows how a simple change of variables may substantially reduce errc
numerical computation of this equation. A further application to phase field models is me
in Section 4. We conclude by commenting on some directions for future research.

2. ASIMPLE EXAMPLE

A simple equation possessing diffuse interface solutions is the bistable reaction diffus
equation

¢t - ¢XX + f(¢)a X e Ra (1)

which arises in many contexts (ecology, flame front propagation, and dynamical ph
transitions, to name a few). For the sake of this example, we take

f(¢) = 2¢(1 — ¢%) + u(l— ¢?), )
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whereu is some parameter withu| < 1. Unlike other examples considered in this paper
the interface width does not appear explicitly, but we will show how a simple transformati
can lead to huge gains in computational accuracy.

A remarkable fact about (1) is that it admits the explicit traveling wave solution

¢ (X, 1) = tanh(x + ut).

Furthermore, it has been shown that a large class of initial data converge exponentiall
time to a translate of this solution [11]. The difficulty in computing this type of equatio
is now somewhat apparent: because of the exponential decay of the tanh function, if
computational grid is too coarsgwill only have values very close th1. This simply does
not provide enough information for the interface to propagate correctly. In fact, on suital
coarse grids, solutions will get stuck in artificial steady states, a phenomenon knowr
“pinning” (see [17] for a proof of this).
Instead of computingy, we can make an obvious change of variables

¥ = tanh i(¢).
Then,yr solves the evolution equation
Yt = Yx + 1+ 2taNkGY) (1 — ¥2). ®)
Suppose now thdk; } is some infinite grid with spacingx; = Xj;1 — X, and letAt be

a discrete time step. Using second-order accurate difference formulas in space and ex
time differencing, Eq. (3) may be discretized as

Pt 2V g 2tanty, (1 - G,
G- AXZ i1 — APV ) + (AX? + AXE ) i |
(AXi_1 4+ AX)AX_1AX
L AXi_1¥iq1j + AXii_1j — (AXi—1 + AX) i

(AXi_1 + AX)AX_1AXi /2 ’

wherey; ; ~ (X, j At) is a discrete representation wf
Now suppose “traveling wave” initial daig o = X; — Xo. The discrete solution may be
written down explicitly in this case,

Vi) = Vio+ ujAt,
or in terms of the original functions
¢i j = tanh(x; + uj At).

In other words, there is no error at all from discretizing the equation! This was somew
lucky since the original equation was chosen to have a nice, explicit solution, and
chose very specific initial data. Nevertheless, the rest of the paper shows that this so
transformation can have advantages in more elaborate settings.
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3. THE ALLEN-CAHN MODEL

A well-known diffuse interface description for isothermal phase transitions is the Aller
Cahn model [2],

¢ = Ap +e 2 (9), (4)

where

f(¢) = 2¢(1— ¢?),

which is a multidimensional version of the reaction diffusion equation abovepwithO.
A Neumann boundary condition will be imposed when necessary.

Many key ingredients of asymptotic analysis of diffuse interfaces can be seen in t
example. The behavior of solutions in the lirait> 0 is well known [10, 20], and we shall
review it here. After a small transient time interval, the solution develops narrow laye
connecting the two stable stat&d. This suggests using a matched asymptotic approac
where an outer, slowly varying solution is sought away from the layer which must smoot
connect to a rapidly varying inner solution.

For the outer solution, one assumes a regular expansion in powerd tife form

¢ =got+epr+epat .

Inserting this into (4) and equating terms with like powerg ofve find thatpy = +1 and
¢1 = 0 (in fact, all further orders ap are zero; only transcendental corrections are present
The values ofyp must match the inner solution, which we describe next.

The inner solution corresponding to the interfacial layer is then found by a similar asyn
totic procedure. All quantities which depend oare expanded in a series as before, sucl
as

¢=<I>0+6©1+62<D2+“‘.

Quantities which depend on the zero levelBet {x | ¢ (x) = 0}, such as normal velocity
and curvature, also require the same regular expansion.

To account for the possibility of a curved interface, a moving, orthogonal coording
system(r, s) is used, where is the signed distance from the level $et {x | ¢ (x) = 0}
ands is the distance along the interface, or in higher dimensions a parameterization of
level set surface which preserves distance. The coordinate system is oriented se that
corresponds tg > 0. The normal coordinate is rescaled using = ¢~ !r reflecting the
fact thatg varies rapidly near the interface.

In the new, scaled coordinate system, Eq. (4) takes the form

e My = € PP+ e TAT G, + €2 (¢) + O(D). (5)

To leading orderAr = ko, the curvature of", where the convention is used that a convex
region of¢ < 0 has positive curvature. Also, to leading ordee= —V;, the normal velocity

of I'. Note thatV is defined so that it is positive when the interface moves from left to righ
in ther coordinate system.
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To lowest order ire, we obtain

(Po)zz+ f(¢) =0,

which has the monotone increasing solution

®g =tanhz) = tanh(i), (6)

which is the profile of the transition layer. This is the information we will utilize in making ¢
beneficial change of variables in Section 3.1. For completeness, we describe the rema
of the analysis.

By equating terms of order in (5), we get the equation

d? ,
[W + f (‘Do)} @1 = (ko + Vo) (¢0)z.
This linear equation only has solutions when the right-hand side is orthogonal to functi
in the null-space of the self-adjoint operator which appears on the left. Notinghats

in the kernel, we multiply the equation by it, and after integration by parts we derive t
so-called solvability condition

Vo = —Ky.

The leading order motion df is therefore a well-known interface problem, namely motior
by mean curvature [8, 9, 12].

3.1. Nonlinear Transformation

Suppose thatv, u) is a fixed, orthogonal coordinate system which preserves lengtt
wherev is normal angt tangential to the interface in two dimensions. Because of (6), loc
in time and space solutions will have the approximate traveling wave behavior

@)

¢~ tanh<7v — Vi, t)t)

€

wherev = V't locates the center of the diffuse interface.

The error due to discretizations of differential operators are typically proportional
magnitude to higher order derivatives of the actual solutions. For example, the usual sec
order discretization of the Laplacian with a grid spacing of gizewould lead to an error
proportional to the fourth derivative @f. Thus, the error in computing a solution such as
(7) potentially has a magnitude 6Ax)% 4, requiring thatAx < €2 for solutions to be
computed accurately. We will see that in practice the error is not this bad, but is still a me
problem unlesa\x « ¢. It is easy to see that similar problems can occur when the tinr
derivative is discretized.

As an important note, higher order methods would likely be of little help for the follow
ing reason. The function tanh is not analytic on the whole real line and has higher or
derivatives which grow factorially, canceling much of the gain from higher powersxof
in the error term (this is in fact true of any exponentially decaying interface-like solutior
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tanh™(¢)

FIG. 1. The upper graph is a typical cross sectiomafhowing diffuse interfaces at= 7, 18, 31 for width
¢ = 1. The transformed functio# is shown below. The only places has large higher order derivatives is along
the “ridges” between the diffuse interface positions.

Similar to the transformation above, we introduce the followirg 1 change of variables:
¥ = etan}(¢). (8)

From the asymptotic analysis, notice tijat- r. In other wordsy/ is a good approximation
to a “signed distance function” to the zero level set éwd/| ~ 1. Then by (7),¥ is
approximately

v~v—V(u,bt.

The advantage is that higher order derivativegradre now completely independentaf
and therefore one can expect discretization errors to be smaller.

When multiple interfaces or domain boundaries are pregemiay posses “ridges” where
two signed distance functions collide and first derivatives change rapidly (see Fig. 1). T
may introduce large truncation errors near these points, hiat i large along these ridges,
these errors would result only in transcendentally small changgstgelf, which should
have virtually no consequence.

The evolution of the transformed variahleis now

Vi = AY +261tanh(f> 1 —|Vyd. (9)
Without the Laplacian term, the equation is hyperbolic and versions of it have appeare
the level set method literature [21] as a way of “reinitializing” a function whose zero level s
designates some interface. The reinitialization equation, when computed to a steady <
ensures that is exactly a signed distance function. In our case, since the time scale of t
term isO(¢), we are assured that to a good approximatipiis a signed distance function.
As a remark, it is interesting that the interface motion is readily apparent from Eq. (!

It is known that the Laplacian of a signed distance function is the mean curvature of e
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of its corresponding level sets at each point. Thus, witete 0, the normal velocity of the
zero level sef" is

Vi _ _
V=g S V=AY =
which is motion by mean curvature as expected.
Finally, it should be mentioned that Eq. (9) is still strictly parabolic just as the origin.
Eq. (4). Consequently, computation of this equation can be effectively handled with stanc
finite difference techniques, for example. Additionally, issues concerning numerical stabi

are the usual ones for parabolic equations.

3.2. Experimental Comparison

We now test the ideas of the preceding section to show that the proposed transforms
is indeed beneficial. We discretize the two-dimensional version of equation (9) in the m
obvious manner, by replacing spatial derivatives with their usual second-order accu
representations on a spatially uniform grid indexed by the (@ajn,

d o Vi Vi T V-1t Vi — A 1 Vi,
dt‘/fl,j = AX2 + 2¢ “tanh —E
( (Yiyvj —Iﬂi1,1)2+(1/fi,j+1—§/fi,11)2)

x [ 1— ,

(2Ax)2

whereAx is the grid spacing. The Neumann boundary condition is handled by reflecti
the grid across the boundary. Since the resulting system is stiff, an implicit time stepp
scheme is desirable. For most of the experiments shown here, however, the time st
small to enough to permit an explicit step. When an implicit method was used, the equati
were solved by a straightforward Newton’s method. The linear algebra was handled t
GMRES algorithm using a SOR preconditioner. For comparison, the original Eq. (4) w
also discretized in the same manner.

3.3. Spatial Truncation Error

To compare the errors introduced by the spatial discretizations, identical initial data v
propagated for a short time and the final answers were compared. The spatial domain
taken to be the box [05] x [0, .5] with reflective (Neumann) boundary conditions, and the
initial data was a circular “seed”

/x2 2
d(X,y) = tanh<'25_++y> ,
which was propagated forward up to tire= 5 x 1073, in all cases using an explicit time
step of At =5 x 107, For each value o€, an essentially converged solutigri was
computed for the untransformed Eq. (4) using a grid spacing 20 times smallet thar
This solution was compared to computations with coarser grids by computing a disci
approximation to thé., error,

1/2
Error = (Z(d)i,j —¢?fj)2(AX)2> ;
ij
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TABLE |
Comparison of Spatial Truncation Errors for the
Original and Transformed Equations for € = .04

AX Original Transformed
0.08 * 21x 103
0.04 * 57 x 10
0.02 26 x 1072 1.3x 10
0.01 59 x 104 22x10°
0.005 13 x 10 21x10°

Note.(x) denotes that pinning occurred.

or for the transformed equation

. 2 1/2
Error = (Z {tanh(%) —¢i’fj} (Ax)2> )

i

Here,¢"; is a cubic spline interpolation @f* evaluated at the corresponding grid points.

Tables | and Il show the results for both equations. Second-order convergence is ¢
in all cases as the grid is refined, but for equal resolutions, the transformed equa
yielded smaller errors, sometimes by two orders of magnitude. The only discrepancy
curred when computing the finest resolutions of the transformed equation, likely beca
the true spatial truncation error was comparable to that of the nearly converged solu
P*.

WhenAx was too large, solutions of the original untransformed equation became pinn:
that is they did not move after a short period of time. We found that this occurs in o
transformed equation also, but only whaw is many times larger than

3.4. Approximation to Mean Curvature Flow

Frequently, equations with diffuse interfaces are used only to approximate their col
sponding sharp-interface motion. It is therefore interesting to compare numerical soluti
of the intended dynamics of the interface.

The computational experiment we used was identical to the previous one, except tha
equation was propagated outtte= 10~2. Since the initial data is a circle, the radiRsof

TABLE Il
Spatial Truncation Errors for € = .02

AX Original Transformed
0.04 * 32x 103
0.02 * 14 x 10
0.01 32x 1073 2.3 x10°°
0.005 74 x 1074 25x10°

0.0025 15 x 10 —
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the circular interface should shrink according to

dR 1 1
a = —E, R(0) = Zv

1 2

The radius of the computed interfacé@) was calculated by finding the zero ¢f or
¢ along thex-axis using cubic interpolation. It was checked that this only resulted |
a negligible, oscillating error when the interface velodityt) was computed by finite

which has the solution

10 T T T i T T T T T E
| ]
| 1
5 © | . 3
g . | e
w | .
3 .
10 °F - | E
g © I 3
R H * |
L fem0d- *
10-4 I 1 1 1 I L I 1
o] 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
AX
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FIG. 2. Error between exact dynamics for mean curvature flow of a circular seed and computation of
original equation (circles) and the transformed equatignNote that pinningy{ — 0) occurred in the original
version when the grid refinement approacked
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differences. An error defined by

102
Error:/ Ir'(t) + 1/r ()| dt
0

was used to compare the computed solution to mean curvature flow.

Figure 2 displays the results. The transformed equation is again more accurate, but
refinement beyondx ~ ¢ did not improve the results. This suggests that the numeric:
error at this point is comparable to the asymptotic error, and as a consequence fur
refinement is not useful. Surprisingly, the transformed version had less errorAvhene
than it did with greater refinements, probably due to a cancellation between asymptotic
numerical error.

4. PHASE FIELD EQUATIONS

Various nonisothermal versions of the Allen—Cahn model known as phase field equati
have become a popular way of simulating crystalline interface motion as well as other ph
transition processes. The version we will examine is similar to that proposed by Karma :
Rappel [15] and Almgren [3],

G“dj P o= np+e2tp.u) (10)
(U—¢/2) = Au, (11)

where we takef to have the form
5¢
f(p,u) =2p(1—¢?) — >—u(l — ¢»>.
4dg

The variableu typically represents temperature, and its derivatives may vary significan
across the diffuse interface. Therefore, it will be important to consider transformatio
involving both variables.

4.1. Asymptotic Analysis

The analysis for this equation proceeds along similar lines as the Allen—Cahn equa
(see refs. [6, 15] for more detail). The varialblés also expanded in powers offor both
inner and outer regions. In the outer regions, each orderjo$t solves a heat equation
sinceg is constant there:

(UO)t = (UO)XX7 (Ul)t = (Ul)xx» ..

It is necessary to match the inner and outer expansions by equating them on some
intermediate scale. These matching conditions take the form of boundary conditions for
inner solution. We shall not need them to describe our transformation method, and there
their description will be omitted.

To leading order, the inner solution fgrhas the same form as befobg(z) = tanhz).
The inner solution fou, which is designated by the capitdy, is simply

Up = const.
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The value of this constant is determined by a solvability condition at a higher asymptc
order.
To next order, we get the linear equation

d2 ,3 5 Uo 2
—— + f5(P0,0) p D1 = (ko — = Vo | (P S (1-93) .
{d22+ »(Po )} 1 (Ko d o)( o)z-i-4dO ( %)
The solvability condition is obtained the same way as it was for the Allen—Cahn model.
virtue of [ (®g)2dz= 3, we obtain

UO = —ﬂVO — dol{o, (12)

which is the well-known Gibbs—Thomson condition with a kinetic undercooling term. T
next order inu, we obtain the equation

V
(Up)zz = 7°(<I>o>.

Integrating twice gives

V,
up = ?O logcoste + Az+ B,
where the constants of integratidrand B can be found by using the appropriate matching
conditions. This gives a relationship for the jump in the normal derivative, @icross the
interface, namely the “Stefan” condition

dUo
),
This is apparent from the form of;, since its derivative with respect to the unscaled norme
coordinate is e 1Vptanhz)/2.

An important observation due to Karma and Rappel [15] is that the analysis may
continued to a further order, and with an appropriate choige,afhe condition (12) may
be enforced to even a further order. Thus, the asymptotic error is(@f$), comparable
to the error of a second-order numerical scheme wherr €. For this particular model,
the correct choice ig = 5/12.

The main observation to be made is that near the intertabas form

u= %V log cosiz) + a linear function (13)

This motivates the change of variables presented next.

4.2. Transformation of the Phase Field Equations

For the variablep, we change to the new variable as before (8). Note that to a good
approximationys ~ €z, so that a good candidate for a transformation néar the interface
is

w=u-— EV(x, t) log cosh(¢>.
2 €
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This means, according to (13), thatwill be approximately linear irg, unlike u whose
derivative suffers a sharp transition across the interface. The fun¢tiort) may be chosen
in any number of ways to approximate the interface velocity; one natural chdice j$) =
—yr (X, t). Inthe numerical experiments below,is taken at each time step to be a function
of spaceonly; that is, for some particular time V (X) = —y(X, t). This eliminates time
derivatives ofV which appear in the transformed equations.

The evolution equations for the new variables are

LEB — Ay — 2 Ysech <W) + 2eltanh(‘”) 1— VY] (14)
do 4do € €
-1
wy = Aw + € secR (W) Yt + VIVY?) + 1tanh(¢>
2 € 2 €

14

X 2VV -V + V(AW — Y1) + % log cosh(:) (AV —Vp). (15)

At first sight, this system may seem formidable. Equation (14) is, with exception of tl
term containingl, the same as (9). The second equation contains a number of terms, but €
is straightforward to compute. Tlke® term in (15) not actually that large: sinte= —,
this term actually contains a factor of-1| V|2, which is small because Eq. (14) forags
to be close to a signed distance function.

4.3. A 1-D Experiment

Onetest of the proposed transformation is the computation of a one-dimensional trave
wave solution. Here the system is supplemented with the far field conditions

im ¢(x) =71, Ilim uUX)=0, Ilim ux)=-A.
X— =t X——00 X——00

When A > 1, there is an exact traveling wave solution to the sharp interface limit fre
boundary problem, namely

SO 1) = —A+exp(—cx+c’t) x—ct>0
o0 X —ct <0,

which has a speed of propagation

The goal of the experiment was to compute these velocities for original and transforn
equations and compare them.

The spatial grid used was uniform, and as the simulation progressed, the grid adapti
moved keep the transition layer in the center of the computational domain. The discretiza
ofthe equations was much the same as before, with space derivatives approximated to se
order. An explicit time stepping procedure was used, and the Laplacian and gradient te
were replaced by their usual second-order, finite difference approximations.



NONLINEAR PRECONDITIONING 707

At each stepy; was computed by finite differences, and the functbwas regarded as
a function of space only, setting

V(X) = Y (X, 1).

Before the variablal was updated, it was transformed inig and thew-equation was
updated in the interfacial region. Away from the interface, uhequation was computed
normally, however, since the contribution of theerm is negligible there.

The specific problem had the parameters 0.1, dy = 0.5, 8 = 0.1, A = 1.1, andu
chosen as before so that the sharp interface limit is approximated to@¢e®r The sharp
interface steady state velocity is thereferel.

In each experiment, the time step was= 5 x 1078, and the simulation was run until
the average velocity stabilized within 19 The velocity was measured over a time interval
of 10 units, so that small oscillations in the interface position were averaged out. Simulati
were run for the original equations, the fully transformed equations, and the case wt
only ¢ was transformed.

The results of the simulation are presented in Fig. 3. The conclusions are very simila
what was presented for the Allen—Cahn model, that computing the transformed equat

10° . . . — 0 . ; 9
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g o LTRSS
T DURDUNRTELE A
> R |
\ $§;::§' ______ | 3
,_10_2 *o Ko e ]
[ %
|
|
le=0.1
10‘3 ! ! |

0 0.02 0.04 006 0.08 A0.1 012 0.14 016 018 0.2

(]
10 ; . — —————————— o
. |
|
|
1
§‘10 3 : ;
E | B
2 - [
| o .,l
T 2 ’ ¥
10 _-0 o L o
e@;:&: ..... Fe s o : """
|e=0.05
-3 ! 1 I I | I 1 I I
10

0 0.01 0.02 003 0.04 A0;(05 0.06 007 008 0.09 0.1
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FIG.3. Steady velocities for the phase field model as a function of the minimum grid refinement for two valt
of €. Shown is the difference between the asymptotic veloeit})(@nd the velocities obtained by computing the
untransformed equation (circles), transformifhignly (diamonds) and transforming both variables Note that
pinning (v — 0) occurred in the original version when the grid refinement approached
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gives substantially less numerical error, especiallg &sin approaches. The necessity of
theu-transformation is also apparent.

Notice that the asymptotic error is reduced roughly by a factor of four whemhalved,
confirming that the asymptotic error@(e?). Furthermore, the numerical error is compa-
rable to the asymptotic error for the transformed equation even when the grid refinen
is comparable te. In other words, there is no advantage in refining the grid beyond th
point if the only goal is to compute the sharp interfacial motion.

4.4. 2-D Dendritic Growth

The second experiment involved computing a steadily growing, parabolic shaped denc
on a two-dimensional domain. This growth mode requires anisotropy of surface tensi
represented here by the parametgrwhich has been included in phase field models pre
viously in a number of ways [23, 24]. For the example herederms in (10) and (14)
were replaced by

do(1 — 15y cog40)),

wherey is a measure of the anisotropy strength. The afgie the orientation of the
interface, which satisfies

¢y Wy
tanlf) = — = —.
éx  Yx
With this change, the essential features of the asymptotics are unchanged, and thu
proposed transformation should be equally beneficial.

20p -

10 15 20

FIG. 4. Evolution of a crystalline seed. Shown are the interfaces (zero level sets) at tim@es2, 4, . . ..
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FIG. 5. Steady velocities for the two-dimensional phase field dendrifedénote the results of computing
with the usual equations, ang)(are the results using the transformed equations. Again, whenas larger than
€, no steady growth was observed using the original equations.

The simulations were run assuming four-fold symmetry on a uniform spatial grid wi
physical dimensions [®5] x [0, 25]. The initial data

P :tanh(l_ |X|>
€

U= —do IX] <1
T1-A+(A—doexpl—|x]) Ix|>1

were used for all computations, representing a small circular seed which gradually deve
into a four-fold symmetric dendrite whose arms grow steadily (see Fig. 4).

The numerical experiment measured the steady growth rates of the dendrite tip for
the original and transformed equations. As with the 1-D experiment, Eq. (15) was only u:
near the interface; otherwise the untransformed version was used. All simulations usec
parameters = 0.1,dp = .02, 8 =0, A = .55 u =5/12, y = .05.

The results are similar to the preceding experiments (Fig. 5). As the mesh spacing
proached the characteristic interface widtthe normally computed equations became ven
inaccurate, whereas the preconditioned approach yielded reasonable results even whe
mesh spacing was2

5. CONCLUSIONS

We have shown that simple, well-motivated transformations can significantly redc
errors associated with typical discretization schemes for diffuse interface problems. C
sequently, coarser grids may be utilized, expediting computation.

The experimental results here indicate that grid resolutions may be coarsened by a f
between 4 and 10. In higher dimensions, this means that grid sizes may smaller by se
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orders of magnitude, giving at least that much advantage in speed. Furthermore, there st
be improvements in time truncation errors, allowing for larger time steps.

For the purpose of computing approximations to free boundary problems, we have gi
an empirical criterion for grid refinement: that the grid spaaigneedn’t be smaller than
the interface widthe. Beyond this point, asymptotic error is larger than numerical erro
anyhow, so refinement would be pointless. The net result is that it is the size of the grid
not the interface width which limits the accuracy of the computation. This suggests the
is possible to make diffuse interface models competitive with other methods for simulati
interface motion.

Regardless of the method used, there is usually no reason to keep track of phase vari
like ¢ away from interfaces where they are approximately constant. Because the tre
formed ¢ equations have much in common with level-set representations of interfac
some techniques from this field can be borrowed. In particular, simple adaptive grid pro
dures for level set methods exist [1], which may provide an even more efficient methoc
computation.

There are many diffuse interface problems which could benefit from the techniqt
described here. Among them are Cahn-Hilliard models [7] for phase separation, diffi
interface models for binary fluids [13, 16], as well as the vast wealth of problems possess
viscous shock layers or reaction diffusion fronts. Applications to some of these are
subject of current investigation.
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