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Nonlinear Preconditioning for Diffuse Interfaces
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A method of transforming problems with diffuse interfaces is presented which
leads to equations that are easier to compute accurately. Information obtained by
internal layer asymptotic analysis is utilized to motivate transformations of the de-
pendent variables. The new evolution equations which result from this change of
variables can be solved numerically in a straightforward manner. Numerical experi-
ments indicate that truncation errors can be significantly reduced in such problems,
allowing a coarser grid to be used. Applications to several well-known models are
presented. c© 2001 Elsevier Science
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1. INTRODUCTION

Numerous physical models have solutions which develop diffuse interfaces, narrow spa-
tial structures where the solution or its derivatives vary rapidly, but continuously, between
two (or more) values. This rapid variation naturally leads to difficulty in numerical compu-
tation. In particular, very fine grids must be employed to adequately resolve the structure
of solutions around the diffuse interface.

Associated with diffuse interfaces is a small scaleε, proportional to the width of the inter-
face. This scale frequently appears explicitly as a parameter in the model equations. The limit
asε → 0 can usually be analyzed systematically by asymptotic expansions [10]. The output
of this analysis is a description of the motion of the limiting interface, which is typically some
free boundary problem. The fine structure of the solution is also produced as a by-product
of the analysis; it is this information we will utilize to improve computational results.

Most approaches to solving such equations numerically lead to the conclusion that the
grid refinement near the interface needs to be much less than the widthε if solutions are to
be computed accurately. This leads to very large grid sizes, especially in higher dimensions,
and makes computing interesting problems prohibitive.
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One way of ameliorating this problem is to adaptively refine the grid only near the
transition layer (refs. [4, 5, 18, 19] are examples of this). This can lead to more efficient
computation, but at the expense of complicating the implementation of the underlying
numerical method.

Another approach is solve the sharp interface free boundary problem derived from the
asymptotic analysis as an alternative to the diffuse interface model (some examples are
[14, 22]). Difficulties arise, however, during topological changes, when interfaces break
apart or merge together. Frequently ad hoc approaches have been needed to handle these
cases. As a result, numerical algorithms can be exceedingly complicated.

This paper explores yet another way of overcoming the problem of requiring very fine
grids near interfaces. Very specific information about solutions near diffuse interfaces is
available from the asymptotic analysis for small interface widths. This information may be
used in turn to make intuitively motivated transformations of the equations. In this paper the
transformations take the form of simple changes of variables, but nonlocal transformations
could also be advantageous. On the basis of numerical experiments, we conclude that a
substantial gain in accuracy is obtained from computing the equations in terms of the
transformed variables instead. An important point is that this technique is not sensitive to
the type of numerical discretization employed, nor is it mutually exclusive of efficiency-
improving algorithms such as adaptive mesh refinement.

The idea of transforming problems to make them easier to compute is not new, of course.
Applying a Fourier transform to the usual heat equation, for example, may yield a trivial set
of uncoupled ordinary differential equations. Preconditioning of linear systems is another
situation where a transformation can make problems significantly easier to solve; it can,
for example, greatly accelerate the convergence of iterative methods. These examples serve
as motivation for finding transformations for any problem which makes it easier to solve.
Fundamental to this process is incorporating analytical information already known about
the problem. This information need not be complete, but only needs to, in some sense, get
us “closer” to knowing the solution. In the case of diffuse interface phenomena, asymptotic
information for small interface width is typically available.

This paper considers several examples of diffuse interface models, and shows how sim-
ple, well-motivated transformations may improve the outcome of numerical simulation.
Section 2 reviews a simple example which motivates the transformations considered in the
rest of the paper. Section 3 reviews a prototypical diffuse interface problem, the Cahn–Allen
equation, and shows how a simple change of variables may substantially reduce error in
numerical computation of this equation. A further application to phase field models is made
in Section 4. We conclude by commenting on some directions for future research.

2. A SIMPLE EXAMPLE

A simple equation possessing diffuse interface solutions is the bistable reaction diffusion
equation

φt = φxx + f (φ), x ∈ R, (1)

which arises in many contexts (ecology, flame front propagation, and dynamical phase
transitions, to name a few). For the sake of this example, we take

f (φ) = 2φ(1− φ2)+ µ(1− φ2), (2)
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whereµ is some parameter with|µ| < 1. Unlike other examples considered in this paper,
the interface width does not appear explicitly, but we will show how a simple transformation
can lead to huge gains in computational accuracy.

A remarkable fact about (1) is that it admits the explicit traveling wave solution

φ(x, t) = tanh(x + µt).

Furthermore, it has been shown that a large class of initial data converge exponentially in
time to a translate of this solution [11]. The difficulty in computing this type of equation
is now somewhat apparent: because of the exponential decay of the tanh function, if the
computational grid is too coarse,φ will only have values very close to±1. This simply does
not provide enough information for the interface to propagate correctly. In fact, on suitably
coarse grids, solutions will get stuck in artificial steady states, a phenomenon known as
“pinning” (see [17] for a proof of this).

Instead of computingφ, we can make an obvious change of variables

ψ = tanh−1(φ).

Then,ψ solves the evolution equation

ψt = ψxx + µ+ 2 tanh(ψ)
(
1− ψ2

x

)
. (3)

Suppose now that{xi } is some infinite grid with spacing1xi = xi+1− xi , and let1t be
a discrete time step. Using second-order accurate difference formulas in space and explicit
time differencing, Eq. (3) may be discretized as

ψi, j+1− ψi, j

1t
= L + µ+ 2 tanh(ψi, j )(1− G2),

G = 1x2
i−1ψi+1, j −1x2

i ψi−1, j +
(
1x2

i +1x2
i−1

)
ψi, j

(1xi−1+1xi )1xi−11xi

L = 1xi−1ψi+1, j +1xiψi−1, j − (1xi−1+1xi )ψi, j

(1xi−1+1xi )1xi−11xi /2
,

whereψi, j ≈ ψ(xi , j1t) is a discrete representation ofψ .
Now suppose “traveling wave” initial dataψi,0 = xi − x0. The discrete solution may be

written down explicitly in this case,

ψi, j = ψi,0+ µj1t,

or in terms of the original functions

φi, j = tanh(xi + µj1t).

In other words, there is no error at all from discretizing the equation! This was somewhat
lucky since the original equation was chosen to have a nice, explicit solution, and we
chose very specific initial data. Nevertheless, the rest of the paper shows that this sort of
transformation can have advantages in more elaborate settings.
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3. THE ALLEN–CAHN MODEL

A well-known diffuse interface description for isothermal phase transitions is the Allen–
Cahn model [2],

φt = 1φ + ε−2 f (φ), (4)

where

f (φ) = 2φ(1− φ2),

which is a multidimensional version of the reaction diffusion equation above withµ = 0.
A Neumann boundary condition will be imposed when necessary.

Many key ingredients of asymptotic analysis of diffuse interfaces can be seen in this
example. The behavior of solutions in the limitε → 0 is well known [10, 20], and we shall
review it here. After a small transient time interval, the solution develops narrow layers
connecting the two stable states±1. This suggests using a matched asymptotic approach,
where an outer, slowly varying solution is sought away from the layer which must smoothly
connect to a rapidly varying inner solution.

For the outer solution, one assumes a regular expansion in powers ofε of the form

φ = φ0+ εφ1+ ε2φ2+ · · · .

Inserting this into (4) and equating terms with like powers ofε, we find thatφ0 = ±1 and
φ1 = 0 (in fact, all further orders ofφ are zero; only transcendental corrections are present).
The values ofφ0 must match the inner solution, which we describe next.

The inner solution corresponding to the interfacial layer is then found by a similar asymp-
totic procedure. All quantities which depend onε are expanded in a series as before, such
as

φ = 80+ ε81+ ε282+ · · · .

Quantities which depend on the zero level set0 = {x |φ(x) = 0}, such as normal velocity
and curvature, also require the same regular expansion.

To account for the possibility of a curved interface, a moving, orthogonal coordinate
system(r, s) is used, wherer is the signed distance from the level set0 = {x |φ(x) = 0}
ands is the distance along the interface, or in higher dimensions a parameterization of the
level set surface which preserves distance. The coordinate system is oriented so thatr > 0
corresponds toφ > 0. The normal coordinater is rescaled usingz= ε−1r reflecting the
fact thatφ varies rapidly near the interface.

In the new, scaled coordinate system, Eq. (4) takes the form

ε−1rtφr = ε−2φzz+ ε−11rφz+ ε−2 f (φ)+ O(1). (5)

To leading order,1r = κ0, the curvature of0, where the convention is used that a convex
region ofφ < 0 has positive curvature. Also, to leading orderrt = −V0, the normal velocity
of 0. Note thatV is defined so that it is positive when the interface moves from left to right
in ther coordinate system.
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To lowest order inε, we obtain

(80)zz+ f (φ) = 0,

which has the monotone increasing solution

80 = tanh(z) = tanh

(
r

ε

)
, (6)

which is the profile of the transition layer. This is the information we will utilize in making a
beneficial change of variables in Section 3.1. For completeness, we describe the remainder
of the analysis.

By equating terms of orderε−1 in (5), we get the equation[
d2

dx2
+ f ′(80)

]
81 = (κ0+ V0)(φ0)z.

This linear equation only has solutions when the right-hand side is orthogonal to functions
in the null-space of the self-adjoint operator which appears on the left. Noting that(φ0)z is
in the kernel, we multiply the equation by it, and after integration by parts we derive the
so-called solvability condition

V0 = −κ0.

The leading order motion of0 is therefore a well-known interface problem, namely motion
by mean curvature [8, 9, 12].

3.1. Nonlinear Transformation

Suppose that(ν, µ) is a fixed, orthogonal coordinate system which preserves lengths,
whereν is normal andµ tangential to the interface in two dimensions. Because of (6), local
in time and space solutions will have the approximate traveling wave behavior

φ ∼ tanh

(
ν − V(µ, t)t

ε

)
, (7)

whereν = V t locates the center of the diffuse interface.
The error due to discretizations of differential operators are typically proportional in

magnitude to higher order derivatives of the actual solutions. For example, the usual second-
order discretization of the Laplacian with a grid spacing of size1x would lead to an error
proportional to the fourth derivative ofφ. Thus, the error in computing a solution such as
(7) potentially has a magnitude of(1x)2ε−4, requiring that1x ¿ ε2 for solutions to be
computed accurately. We will see that in practice the error is not this bad, but is still a major
problem unless1x ¿ ε. It is easy to see that similar problems can occur when the time
derivative is discretized.

As an important note, higher order methods would likely be of little help for the follow-
ing reason. The function tanh is not analytic on the whole real line and has higher order
derivatives which grow factorially, canceling much of the gain from higher powers of1x
in the error term (this is in fact true of any exponentially decaying interface-like solution).
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FIG. 1. The upper graph is a typical cross section ofφ showing diffuse interfaces atx = 7, 18, 31 for width
ε = 1. The transformed functionψ is shown below. The only placesψ has large higher order derivatives is along
the “ridges” between the diffuse interface positions.

Similar to the transformation above, we introduce the following 1− 1 change of variables:

ψ = ε tanh−1(φ). (8)

From the asymptotic analysis, notice thatψ ≈ r . In other words,ψ is a good approximation
to a “signed distance function” to the zero level set and|∇ψ | ≈ 1. Then by (7),ψ is
approximately

ψ ∼ ν − V(µ, t)t.

The advantage is that higher order derivatives ofψ are now completely independent ofε,
and therefore one can expect discretization errors to be smaller.

When multiple interfaces or domain boundaries are present,ψ may posses “ridges” where
two signed distance functions collide and first derivatives change rapidly (see Fig. 1). This
may introduce large truncation errors near these points, but if|ψ | is large along these ridges,
these errors would result only in transcendentally small changes inφ itself, which should
have virtually no consequence.

The evolution of the transformed variableψ is now

ψt = 1ψ + 2ε−1 tanh

(
ψ

ε

)
(1− |∇ψ |2). (9)

Without the Laplacian term, the equation is hyperbolic and versions of it have appeared in
the level set method literature [21] as a way of “reinitializing” a function whose zero level set
designates some interface. The reinitialization equation, when computed to a steady state,
ensures thatψ is exactly a signed distance function. In our case, since the time scale of this
term isO(ε), we are assured that to a good approximation,ψ is a signed distance function.

As a remark, it is interesting that the interface motion is readily apparent from Eq. (9).
It is known that the Laplacian of a signed distance function is the mean curvature of each
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of its corresponding level sets at each point. Thus, whereψ = 0, the normal velocity of the
zero level set0 is

V = − ψt

|∇ψ | ≈ −ψt = −1ψ = −κ,

which is motion by mean curvature as expected.
Finally, it should be mentioned that Eq. (9) is still strictly parabolic just as the original

Eq. (4). Consequently, computation of this equation can be effectively handled with standard
finite difference techniques, for example. Additionally, issues concerning numerical stability
are the usual ones for parabolic equations.

3.2. Experimental Comparison

We now test the ideas of the preceding section to show that the proposed transformation
is indeed beneficial. We discretize the two-dimensional version of equation (9) in the most
obvious manner, by replacing spatial derivatives with their usual second-order accurate
representations on a spatially uniform grid indexed by the pair(i, j ),

d

dt
ψi, j = ψi−1, j + ψi+1, j + ψi, j−1+ ψi, j+1− 4ψi, j

1x2
+ 2ε−1 tanh

(
ψi, j

ε

)
×
(

1− (ψi+1, j − ψi−1, j )
2+ (ψi, j+1− ψi, j−1)

2

(21x)2

)
,

where1x is the grid spacing. The Neumann boundary condition is handled by reflecting
the grid across the boundary. Since the resulting system is stiff, an implicit time stepping
scheme is desirable. For most of the experiments shown here, however, the time step is
small to enough to permit an explicit step. When an implicit method was used, the equations
were solved by a straightforward Newton’s method. The linear algebra was handled by a
GMRES algorithm using a SOR preconditioner. For comparison, the original Eq. (4) was
also discretized in the same manner.

3.3. Spatial Truncation Error

To compare the errors introduced by the spatial discretizations, identical initial data was
propagated for a short time and the final answers were compared. The spatial domain was
taken to be the box [0, .5]× [0, .5] with reflective (Neumann) boundary conditions, and the
initial data was a circular “seed”

φ(x, y) = tanh

(
.25−

√
x2+ y2

ε

)
,

which was propagated forward up to timet = 5× 10−3, in all cases using an explicit time
step of1t = 5× 10−6. For each value ofε, an essentially converged solutionφ∗ was
computed for the untransformed Eq. (4) using a grid spacing 20 times smaller thanε.
This solution was compared to computations with coarser grids by computing a discrete
approximation to theL2 error,

Error =
(∑

i, j

(φi, j − φ∗i, j )2(1x)2
)1/2

,



702 KARL GLASNER

TABLE I

Comparison of Spatial Truncation Errors for the

Original and Transformed Equations for ε = .04

1x Original Transformed

0.08 * 2.1× 10−3

0.04 * 5.7× 10−4

0.02 2.6× 10−3 1.3× 10−4

0.01 5.9× 10−4 2.2× 10−5

0.005 1.3× 10−4 2.1× 10−5

Note.(∗) denotes that pinning occurred.

or for the transformed equation

Error =
(∑

i, j

[
tanh

(
ψi, j

ε

)
− φ∗i, j

]2

(1x)2
)1/2

.

Here,φ∗i, j is a cubic spline interpolation ofφ∗ evaluated at the corresponding grid points.
Tables I and II show the results for both equations. Second-order convergence is seen

in all cases as the grid is refined, but for equal resolutions, the transformed equation
yielded smaller errors, sometimes by two orders of magnitude. The only discrepancy oc-
curred when computing the finest resolutions of the transformed equation, likely because
the true spatial truncation error was comparable to that of the nearly converged solution
φ∗.

When1x was too large, solutions of the original untransformed equation became pinned,
that is they did not move after a short period of time. We found that this occurs in our
transformed equation also, but only when1x is many times larger thanε.

3.4. Approximation to Mean Curvature Flow

Frequently, equations with diffuse interfaces are used only to approximate their corre-
sponding sharp-interface motion. It is therefore interesting to compare numerical solutions
of the intended dynamics of the interface.

The computational experiment we used was identical to the previous one, except that the
equation was propagated out tot = 10−2. Since the initial data is a circle, the radiusR of

TABLE II

Spatial Truncation Errors for ε = .02

1x Original Transformed

0.04 * 3.2× 10−3

0.02 * 1.4× 10−4

0.01 3.2× 10−3 2.3× 10−5

0.005 7.4× 10−4 2.5× 10−5

0.0025 1.5× 10−4 —
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the circular interface should shrink according to

d R

dt
= − 1

R
; R(0) = 1

4
,

which has the solution

R(t) =
√(

1

4

)2

− 2t .

The radius of the computed interfacer (t) was calculated by finding the zero ofψ or
φ along thex-axis using cubic interpolation. It was checked that this only resulted in
a negligible, oscillating error when the interface velocityr ′(t) was computed by finite

FIG. 2. Error between exact dynamics for mean curvature flow of a circular seed and computation of the
original equation (circles) and the transformed equation (∗). Note that pinning (V → 0) occurred in the original
version when the grid refinement approachedε.
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differences. An error defined by

Error=
∫ 10−2

0
|r ′(t)+ 1/r (t)| dt

was used to compare the computed solution to mean curvature flow.
Figure 2 displays the results. The transformed equation is again more accurate, but grid

refinement beyond1x ≈ ε did not improve the results. This suggests that the numerical
error at this point is comparable to the asymptotic error, and as a consequence further
refinement is not useful. Surprisingly, the transformed version had less error when1x = ε
than it did with greater refinements, probably due to a cancellation between asymptotic and
numerical error.

4. PHASE FIELD EQUATIONS

Various nonisothermal versions of the Allen–Cahn model known as phase field equations
have become a popular way of simulating crystalline interface motion as well as other phase
transition processes. The version we will examine is similar to that proposed by Karma and
Rappel [15] and Almgren [3],

εµ+ β
d0

φt = 1φ + ε−2 f (φ, u) (10)

(u− φ/2)t = 1u, (11)

where we takef to have the form

f (φ, u) = 2φ(1− φ2)− 5

4

ε

d0
u(1− φ2)2.

The variableu typically represents temperature, and its derivatives may vary significantly
across the diffuse interface. Therefore, it will be important to consider transformations
involving both variables.

4.1. Asymptotic Analysis

The analysis for this equation proceeds along similar lines as the Allen–Cahn equation
(see refs. [6, 15] for more detail). The variableu is also expanded in powers ofε for both
inner and outer regions. In the outer regions, each order ofu just solves a heat equation
sinceφ is constant there:

(u0)t = (u0)xx, (u1)t = (u1)xx, . . .

It is necessary to match the inner and outer expansions foru by equating them on some
intermediate scale. These matching conditions take the form of boundary conditions for the
inner solution. We shall not need them to describe our transformation method, and therefore
their description will be omitted.

To leading order, the inner solution forφ has the same form as before80(z) = tanh(z).
The inner solution foru, which is designated by the capitalU0, is simply

U0 = const.
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The value of this constant is determined by a solvability condition at a higher asymptotic
order.

To next order, we get the linear equation{
d2

dz2
+ fφ(80, 0)

}
81 =

(
κ0− β

d0
V0

)
(80)z+ 5

4

U0

d0

(
1−82

0

)2
.

The solvability condition is obtained the same way as it was for the Allen–Cahn model. By
virtue of

∫
(80)

2
zdz= 4

3, we obtain

U0 = −βV0− d0κ0, (12)

which is the well-known Gibbs–Thomson condition with a kinetic undercooling term. To
next order inu, we obtain the equation

(U1)zz= V0

2
(80).

Integrating twice gives

u1 = V0

2
log coshz+ Az+ B,

where the constants of integrationA andB can be found by using the appropriate matching
conditions. This gives a relationship for the jump in the normal derivative ofu0 across the
interface, namely the “Stefan” condition[

du0

dn

]
0

= V0.

This is apparent from the form ofu1, since its derivative with respect to the unscaled normal
coordinater is ε−1V0 tanh(z)/2.

An important observation due to Karma and Rappel [15] is that the analysis may be
continued to a further order, and with an appropriate choice ofµ, the condition (12) may
be enforced to even a further order. Thus, the asymptotic error is onlyO(ε2), comparable
to the error of a second-order numerical scheme when1x ≈ ε. For this particular model,
the correct choice isµ = 5/12.

The main observation to be made is that near the interface,u has form

u = ε

2
V log cosh(z)+ a linear function. (13)

This motivates the change of variables presented next.

4.2. Transformation of the Phase Field Equations

For the variableφ, we change to the new variableψ as before (8). Note that to a good
approximation,ψ ≈ εz, so that a good candidate for a transformation ofu near the interface
is

w = u− ε
2

V(x, t) log cosh

(
ψ

ε

)
.
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This means, according to (13), thatw will be approximately linear inz, unlike u whose
derivative suffers a sharp transition across the interface. The functionV(x, t)may be chosen
in any number of ways to approximate the interface velocity; one natural choice isV(x, t) =
−ψt (x, t). In the numerical experiments below,V is taken at each time step to be a function
of spaceonly; that is, for some particular timet , V(x) = −ψt (x, t). This eliminates time
derivatives ofV which appear in the transformed equations.

The evolution equations for the new variables are

εµ+ β
d0

ψt = 1ψ − 5

4

u

d0
sech2

(
ψ

ε

)
+ 2ε−1 tanh

(
ψ

ε

)
(1− |∇ψ |2) (14)

wt = 1w + ε
−1

2
sech2

(
ψ

ε

)
(ψt + V |∇ψ |2)+ 1

2
tanh

(
ψ

ε

)
× (2∇V · ∇ψ + V(1ψ − ψt ))+ ε

2
log cosh

(
ψ

ε

)
(1V − Vt ). (15)

At first sight, this system may seem formidable. Equation (14) is, with exception of the
term containingu, the same as (9). The second equation contains a number of terms, but each
is straightforward to compute. Theε−1 term in (15) not actually that large: sinceV = −ψt ,
this term actually contains a factor of 1− |∇ψ |2, which is small because Eq. (14) forcesψ
to be close to a signed distance function.

4.3. A 1-D Experiment

One test of the proposed transformation is the computation of a one-dimensional traveling
wave solution. Here the system is supplemented with the far field conditions

lim
x→±∞

φ(x) = ∓1, lim
x→−∞u′(x) = 0, lim

x→−∞u(x) = −1.

When1 > 1, there is an exact traveling wave solution to the sharp interface limit free
boundary problem, namely

u(x, t) =
{
−1+ exp(−cx+ c2t) x − ct ≥ 0

0 x − ct < 0,

which has a speed of propagation

c = 1− 1

β
.

The goal of the experiment was to compute these velocities for original and transformed
equations and compare them.

The spatial grid used was uniform, and as the simulation progressed, the grid adaptively
moved keep the transition layer in the center of the computational domain. The discretization
of the equations was much the same as before, with space derivatives approximated to second
order. An explicit time stepping procedure was used, and the Laplacian and gradient terms
were replaced by their usual second-order, finite difference approximations.
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At each step,ψt was computed by finite differences, and the functionV was regarded as
a function of space only, setting

V(x) = ψt (x, t).

Before the variableu was updated, it was transformed intow, and thew-equation was
updated in the interfacial region. Away from the interface, theu-equation was computed
normally, however, since the contribution of theφ term is negligible there.

The specific problem had the parametersε = 0.1, d0 = 0.5, β = 0.1, 1 = 1.1, andµ
chosen as before so that the sharp interface limit is approximated to orderO(ε2). The sharp
interface steady state velocity is therefore= 1.

In each experiment, the time step was1t = 5× 10−6, and the simulation was run until
the average velocity stabilized within 10−4. The velocity was measured over a time interval
of 10 units, so that small oscillations in the interface position were averaged out. Simulations
were run for the original equations, the fully transformed equations, and the case where
only φ was transformed.

The results of the simulation are presented in Fig. 3. The conclusions are very similar to
what was presented for the Allen–Cahn model, that computing the transformed equations

FIG. 3. Steady velocities for the phase field model as a function of the minimum grid refinement for two values
of ε. Shown is the difference between the asymptotic velocity (=1) and the velocities obtained by computing the
untransformed equation (circles), transformingφ only (diamonds) and transforming both variables (∗). Note that
pinning (V → 0) occurred in the original version when the grid refinement approachedε.
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gives substantially less numerical error, especially as1xmin approachesε. The necessity of
theu-transformation is also apparent.

Notice that the asymptotic error is reduced roughly by a factor of four whenε is halved,
confirming that the asymptotic error isO(ε2). Furthermore, the numerical error is compa-
rable to the asymptotic error for the transformed equation even when the grid refinement
is comparable toε. In other words, there is no advantage in refining the grid beyond this
point if the only goal is to compute the sharp interfacial motion.

4.4. 2-D Dendritic Growth

The second experiment involved computing a steadily growing, parabolic shaped dendrite
on a two-dimensional domain. This growth mode requires anisotropy of surface tension,
represented here by the parameterd0, which has been included in phase field models pre-
viously in a number of ways [23, 24]. For the example here, thed0 terms in (10) and (14)
were replaced by

d0(1− 15γ cos(4θ)),

whereγ is a measure of the anisotropy strength. The angleθ is the orientation of the
interface, which satisfies

tan(θ) = φy

φx
= ψy

ψx
.

With this change, the essential features of the asymptotics are unchanged, and thus the
proposed transformation should be equally beneficial.

FIG. 4. Evolution of a crystalline seed. Shown are the interfaces (zero level sets) at timest = 0, 2, 4, . . ..
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FIG. 5. Steady velocities for the two-dimensional phase field dendrite. (s) denote the results of computing
with the usual equations, and (∗) are the results using the transformed equations. Again, when1x was larger than
ε, no steady growth was observed using the original equations.

The simulations were run assuming four-fold symmetry on a uniform spatial grid with
physical dimensions [0, 25]× [0, 25]. The initial data

φ = tanh

(
1− |x|
ε

)
u =

{−d0 |x| < 1
−1+ (1− d0) exp(1− |x|) |x| > 1

were used for all computations, representing a small circular seed which gradually develops
into a four-fold symmetric dendrite whose arms grow steadily (see Fig. 4).

The numerical experiment measured the steady growth rates of the dendrite tip for both
the original and transformed equations. As with the 1-D experiment, Eq. (15) was only used
near the interface; otherwise the untransformed version was used. All simulations used the
parametersε = 0.1, d0 = .02, β = 0,1 = .55, µ = 5/12, γ = .05.

The results are similar to the preceding experiments (Fig. 5). As the mesh spacing ap-
proached the characteristic interface widthε, the normally computed equations became very
inaccurate, whereas the preconditioned approach yielded reasonable results even when the
mesh spacing was 2ε.

5. CONCLUSIONS

We have shown that simple, well-motivated transformations can significantly reduce
errors associated with typical discretization schemes for diffuse interface problems. Con-
sequently, coarser grids may be utilized, expediting computation.

The experimental results here indicate that grid resolutions may be coarsened by a factor
between 4 and 10. In higher dimensions, this means that grid sizes may smaller by several
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orders of magnitude, giving at least that much advantage in speed. Furthermore, there should
be improvements in time truncation errors, allowing for larger time steps.

For the purpose of computing approximations to free boundary problems, we have given
an empirical criterion for grid refinement: that the grid spacing1x needn’t be smaller than
the interface widthε. Beyond this point, asymptotic error is larger than numerical error
anyhow, so refinement would be pointless. The net result is that it is the size of the grid and
not the interface width which limits the accuracy of the computation. This suggests that it
is possible to make diffuse interface models competitive with other methods for simulating
interface motion.

Regardless of the method used, there is usually no reason to keep track of phase variables
like φ away from interfaces where they are approximately constant. Because the trans-
formedψ equations have much in common with level-set representations of interfaces,
some techniques from this field can be borrowed. In particular, simple adaptive grid proce-
dures for level set methods exist [1], which may provide an even more efficient method of
computation.

There are many diffuse interface problems which could benefit from the techniques
described here. Among them are Cahn–Hilliard models [7] for phase separation, diffuse
interface models for binary fluids [13, 16], as well as the vast wealth of problems possessing
viscous shock layers or reaction diffusion fronts. Applications to some of these are the
subject of current investigation.
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